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Abstract

Microarrays are newbiotechnological devices that permit the simultaneous evaluation of expression
levels of thousands of genes in one or more tissue samples.We develop a new method for identifying
differentially expressed genes in replicated cDNA and oligonucleotide microarray experiments. The
method is based on a nonparametric prediction interval which is computed as an order statistic of
n control measurements and is applied sequentially to a series ofp replicate sets of experimental
measurements, each of sizeni . We illustrate how reasonable experiment-wise false positive and false
negative rates can be attained for any practical number of genes based on manipulating the order
statistics, n, p andni . The method is used to identify gene expression levels that are associated with
a pathological condition beyond chance expectations given the large number of genes tested. We
illustrate use of the method on replicated gene expression data in tumor and normal colon tissues, and
compare it to an alternative approach based on permutation tests.
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1. Introduction

With the advent of methods for large-scale gene expression studies, such as microarray
technology (Chee et al., 1996), evaluation of large numbers of gene mRNA levels amongst
different individuals is now possible. An immediate consequence of this new technology
is the ability to differentiate gene expression among normal and diseased states, a problem
of central importance to modern biology and medical research and has wide applicability
to high throughput pharmaceutical screening. From a statistical perspective, the problem
is complex for three primary reasons. First, determining whether an observed difference
between two sources (e.g., normal children versus childrenwithDown’s syndrome) is due to
chance, is an almost insurmountable problemwhen testing several thousand genes. Second,
little is known about the distributional form of intensity data of this type. Often, the data
vary over several orders of magnitude with a proportion of the distribution censored below a
limit of detection (Audic and Claverie, 1998). In many cases (e.g., cDNA microarrays), the
data for each gene are expressed as a ratio of two fluorescence intensity measures, leading
to both left and right censoring problems. Third, the number of available measurements is
typically small (i.e., 10 or 20 at most), at least in part, due to the high expense of these
new technologies, and for some applications due to the limited availability of postmortem
human tissue of sufficient quality for the analysis.
Note that the problem addressed in this paper (i.e., identifying differential expression

levels in replicated microarray experiments) is only one of several important statistical
problems associated with microarrays (seeClaverie, 1999for a review of the earlier work).
Someof theearliest approaches to this problem involved the identificationof groupsof genes
with similar function using cluster analysis (Eisen et al., 1998). Such methods are often
referred to as “unsupervised” in that they do not consider auxiliary information regarding
gene function or their relation to relevant outcomes of interest. Alternative “supervised”
methods have been introduced to take advantage of auxiliary information by incorporating
disease classes or related outcomes. For example, some investigators have focused on the
identification of genes of similar function (e.g., classification of various tumor types) using
various forms of discriminant analyses applied to the expression level profiles (Slonimet al.,
2000; Dudoit et al., 2000;Brown et al., 1999; Ben-Dor et al., 2000).Hastie et al. (2000)have
combined supervised and unsupervised approaches by developed “gene shaving” and “tree
harvesting”’algorithms inwhich hierarchical clustering is used to reduce the dimensionality
of the problem and the resulting gene clusters are then related to outcomes of interest
(e.g., survival time). A similar approach using linear modeling of “genetic profiles” (i.e.,
identified using unsupervised hierarchical clustering) has been suggested byvan Someren
et al. (2000).
Methods for analysis of variance components in a single microarray slide have been

developed byNewton et al. (2001); Kerr et al. (2000)andSapir and Churchill (2000). In
such experiments, the data for each gene consist of two fluorescence intensity measures,
(R, G), representing the expression level of the gene in the red (Cy5) and green (Cy3)
labeled mRNA samples. Typically, one of the two dyes corresponds to a pooled set of
control tissues (e.g., normal colon tissue samples) and the other to an experimental tissue
of interest (e.g., tissue taken from a malignant tumor in the colon).Dudoit et al. (2002)
classify various “single-slide” methods in terms of whether they are based solely on the
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ratio (R/G) or incorporate overall abundance measured by the productRG. Early attempts
at identification of differentially expressed genes (whereRmay reflect a control sample
andG an experimental sample, or the reverse) relied upon an arbitrary cutoff for the ratio
(R/G) (DeRisi et al., 1997; Schena et al., 1995, 1996). Chen et al. (1997)proposed a
statistical criterion for selecting differentially expressed genes based on assuming normality
and constant variance for theR/G ratio.Sapir and Churchill (2000)andLee et al. (2000)
considered a finite mixture model for the raw and log expression ratios and developed
classification rules basedon theposterior probability of a genebelonging to thedifferentially
expressed component distribution. As pointed out byNewton et al. (2001)andDudoit et al.
(2002), limitations of these approaches include the false assumption of normality, and that
the productRG, which contains information regarding the variability ofR/G, is ignored.
Newton and colleagues have proposed a hierarchical regression model based on the gamma
distribution that permits variability to be proportional to the magnitude of expression level
(i.e., the signalR/G depends on the overall abundanceRG). Furthermore,Lee et al. (2000)
found that there was considerable variability in the probability that a genewill be expressed,
even across experimental replicates obtained from the same tissue. This finding clearly
supports the need for obtaining a series of independent measurements from both control
and experimental tissues.
Dudoit et al. (2002)consider a univariate approach to this problem by constructing at-

statistic for comparison ofn1 control hybridizations withn2 experimental hybridizations, in
terms of the log intensity ratios(R/G) for each gene. To adjust the correspondingp-values
for each gene given the testing of the otherk − 1 genes, they use a permutation algorithm
(Westfall and Young, 1993), in which then columns of the entirek × n data matrixX

are permuted into the
(

n
n1

)
possible control versus treatment allocations. Permuting the

columns ofX introduces independence between treatment assignment and gene expression,
while retaining the dependence structure of the genes. The permutation distribution of
the t-statistic for a particular gene is then provided by the empirical distribution of the
permutedt-statistics. A clear advantage of this approach is that it makes no parametric
assumption regarding the distribution of the expression levels, with the exception of a
continuity assumption implicit in the use of the sample standard deviation as a measure of
variability. It is also one of the first examples of an approach that attempts to rigorously
address the multiple comparison problem.
Tusher et al. (2001)propose a method known as significance analysis of microarrays

(SAM) that assigns a score to each gene. The numerical value of the score depends on the
change of its’ expression relative to the standard deviation. SAM also adjusts for multi-
ple comparisons over genes by estimating the false discovery rate (FDR,Benjamini and
Hochberg, 1995), which identifies a threshold, below which, group differences in expres-
sion levels are considered to be consistent with chance expectations. More recently, both
parametric and nonparametric Bayesian methods have been proposed for analysis of mi-
croarray data.Efron et al. (2001), proposed a nonparametric empirical Bayesian mixture
model to identify differentially expressed genes. Their method adjusts for multiple compar-
isons by relying on joint inference to determine significant differences in expression levels.
They show that their method is statistically similar to FDR.Ibrahim et al. (2002)proposed
a parametric Bayesian model for simultaneous analysis of multiple genes in microarray
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experiments. To identify a subset of genes that are differentially expressed in experimental
and control conditions, they derived a Bayesian model selection rule.
An alternative strategy for the case of replicated microarray experiments has been pro-

posed byKerr et al. (2000), who proposed a linear model for log intensities. The basic
idea is to control for differences between the dyes, genes and multiple arrays, using main
effects and interactions in a fixed-effects ANOVA model. In contrast to Dudoit and col-
leagues who consider each gene individually, Kerr and colleagues consider genes to be a
factor in the design with potentially thousands of levels.Dudoit et al. (2002)point out that
for main effects in the model (e.g., the dye main effect), this implies a single error term
for all genes, resulting in a potential loss of sensitivity relative to single gene approaches.
Furthermore, gene-specific effects are estimated by interactions in the model, which lead
to quite different standard errors than single gene approaches and no attempt is made to
adjust for multiple comparisons, although presumably a form of permutation test could be
applied here as well. In this and a related paper (Kerr and Churchill, 2001) are the first to
seriously consider experimental design issues in replicated microarray experiments. This
is a very important area for future research andKerr and Churchill (2001), andYang and
Speed (2002)provide excellent foundations for further study.Zien et al. (2002)extend this
work to consider sample size determination.
Finally,Dudoit et al. (2002), Newton et al. (2001)and Schuchhardt et al. (2000) consider

experimental and statistical aspects of normalization of intensitymeasurements that identify
and eliminate slide-specific sources of variation and enable a more meaningful synthesis
of intensity measurements across different microarrays and experimental conditions. Such
normalization methods range from use of internal standards or “houskeeping” genes, to
dividing each gene intensity by the mean intensity over all genes on a given microarray
slide, to robust local linear fits based on scatter-plot smoothing (Venables and Ripley, 1999;
Dudoit et al., 2002). Depending on the application, any or all of these adjustments may
prove useful for between-slide comparisons.
With the exception of the paper byZien et al. (2002), a feature that is noticeably absent

from this emerging area of statistical work is the consideration of statistical power. As the
number of genes considered increase, control of the overall experiment-wise false positive
rate must, of course, have a profound effect on the power to detect a real difference should
one exist. Here we focus on replicated microarray experiments where power is the ability
to reject the null hypothesis of no difference between experimental and control conditions
when, in fact, a real difference exists.
In the following sections we propose an alternative approach to screening replicated

genetic expression data for differentially expressed genes using sequentially applied simul-
taneous nonparametric prediction limits. These sequential prediction limits can be used to
identify differentially expressed genes in replicated cDNA and oligonucleotide microarray
experiments. Sequential prediction limits provide a useful addition to the growing arsenal
of statistical tools for analysis of microarray data in general, and are particularly useful in
those cases in which the number of control samples is large and the number of experimental
samples is small. For example, assume that a large database of control expression levels is
available (e.g., 50 independent samples). As an initial screening test, we may be interested
in obtaining microarray data from a small number of experimental subjects (e.g., colon
tumors from five patients with colon cancer). Alternatively, we may wish to sequentially
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collect experimental samples one at a time (or in small groups), until we have reasonable
confidence that the identified genes are inconsistent with chance expectations, given the
large number of genes being simultaneously tested. Of course, we must also be satisfied
that we have sufficient statistical power to detect a differentially expressed gene should it
actually be present. On the basis of these limited data, we can then determine which genes
are good candidates for further study. Note that this type of comparison is different from the
traditional two-sample approach in several ways. First, there is generally a large imbalance
between the number of available control and experimental samples. Second, the number
of experimental samples may be too small (e.g., 5 or 10 experimental subjects) to perform
a valid two-sample comparison, particularly since we are routinely screening thousands
of genes. Third, when using prediction limits, the comparison is specific to which of the
two groups is considered to be the reference group. A prediction limit computed on the
control data and used to screen experimental data, may not identify the same genes, had the
group labeling been reversed. For this reason, the statistical methodology introduced here,
may have limited utility where two experimental conditions are being compared. Further-
more, these differences should make it clear that the approach based on prediction limits
is not intended to be a replacement for traditional two-sample tests, either parametric or
nonparametric.
In the following sections, issues for both design and analysis of microarray experiments

are addressed and comparison to traditional two-sample comparison methods is presented.
The methodology is illustrated using data on colon cancer and results are compared to a
permutation test.

2. Statistical development

2.1. cDNA versus oligonucleotide arrays

While the basic foundation of both cDNA and oligonucleotide microarrays are quite
similar, their implementations are typically quite different. In oligonucleotide arrays, the
analysis produces intensities for a single tissue sample (e.g., a colon tumor), whereas the
cDNA array involves the within-array comparison of two tissue samples, typically, an ex-
perimental sample and pooled control. In the discussion that follows we assume that for a
cDNA microarray, both the individual control samples and the experimental samples are
both expressed as a ratio to the pooled control intensity for each gene. In this way, the result
of both cDNA and oligonucleotide microarrays each yield a single intensity measurement
for each gene and tissue sample. Of course, the intensity measurements for the two types of
microarrays are notmeasured on a common scale and therefore, only replicatedmicroarrays
of a single type (i.e., cDNA or oligonucleotide) should be included in a particular analysis.

2.2. Normalization

Although intensity measurements are already the result of considerable numerical pro-
cessing (e.g., methods for extracting signals from background, “signal segmentation,” and
background correction), the scale of intensity measurements can vary from slide to slide
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for numerous systematic reasons. For example, differences in the dyes used can produce
changes in the red and green intensity measurements and their ratio. Furthermore, the
overall intensity for a given slide can change gene-specific variability given the observed
dependence of the intensity ratioR/G on the overall intensityRG(Dudoit et al., 2002). As
such, the intensity dependent normalization method described byDudoit et al. (2002)may
be preferable to global adjustments such as mean or median normalization for analysis of
cDNA microarrays. Several authors (Dudoit et al., 2002; Kerr et al., 2000) have suggested
that log-transformed intensity ratios be analyzed to decrease the dependence of variability
on overall intensity.At aminimum, to normalize for differences between slides, the intensity
level for each gene on a given slide should be adjusted for the overall intensity level of all
genes (mean or median) on that slide. Clearly, normalization is a challenging area in need
of further research. In our example involving oligonucleotide arrays (which do not involve
intensity ratios) in normal colon tissue and colon tumors, we use a global adjustment (i.e.,
divide the overall mean intensity from each gene’s intensity measurement). Since we use
nonparametric prediction limits, the data were not transformed prior to analysis.

2.3. Sequential sampling

To provide a foundation, consider the case in which we haven control slides andm
experimental slides. Assume that the slides representn + m independent tissue samples
and if we are using a cDNA microarray, intensity measurements are expressed as a ratio
to the pooled control sample (i.e., a composite of then control tissue samples). This is the
standard replicated microarray comparison strategy described byDudoit et al. (2002). The
goal is to identify only those genes that are differentially expressed in the experimental
and control populations. Using replicated data,Dudoit et al. (2002)compare the mean
concentrations of then control andmexperimental samples respectively using at-statistic,
or alternatively, then control samples can be used to construct a prediction interval for
the mean of them experimental samples (Guttman, 1970; Hahn and Meeker, 1991). If
the observed experimental mean lies within the prediction interval then we conclude with
100(1− �)% confidence that the experimental data could have been drawn from the same
distribution as the control data. In fact, at this point, the two strategies are actually quite
similar and have relatively similar power characteristics, depending on the relative sizes
of n andm. As an alternative approach, however, we might proceed sequentially by again,
obtainingncontrol samples, but in this casewe collectni experimental samples in each of up
to i=1, . . . , p subsets.After each subset is obtained, we determinewhich, if any, genes have
a mean intensity that is outside of the prediction interval in that subset and all preceding
subsets. We continue until (a) all genes are within the prediction interval in at least one
subset, or (b) we reachp subsets. Those genes that have mean concentration consistently
above(below) the prediction interval in allp subsets are considered to be differentially
expressed. Note that this sequential strategy is, in fact, quite different from the traditional
two-sample comparison approach. For example, ifni = 1 then we can refine our list of
candidate differentially expressed genes after each new subject is obtained.
Forexample, suppose thatwehave tissuesamplesavailable fromn=50postmortembrains

from non-psychiatric patients and we wish to screen individual schizophrenic patients until
we have reasonable confidence, say 95%, that one or more genes out of the 12,000 genes
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tested are differentially expressed. Note that 12,000 genes is the approximate number of
genes that can be simultaneously evaluated given current microarray technology. Numerous
possible decision rules exists, however, consider the simple decision rule that the gene is
differentially expressed if theexpression levels for allni schizophrenic samplesareabove the
maximum control sample. Note that this decision rule is equivalent to selectingpsequential
replicates each of sizeni = 1. For some applications, requiring that allni samples exceed
the control maximum may be too stringent a decision rule. As a less stringent alternative,
we may wish to include the median of sayni = 3 samples (denotedsi = 2). The question
now becomes, how many sequential replicates (p) of sizeni = 3 must be obtained such
that we can have 95% confidence that one or more genes out of the 12,000 genes tested are
truly differentially expressed. Note that by replicates, we are referring to independent sets
of samples, obtained sequentially in time.
In the general case, our objective is to use then control measurements to derive an up-

per (lower) intensity bound for some or all of theni experimental samples in at least one
of the p experimental subsets. Although previously not considered in this way, this is a
classical problem in statistical prediction (Guttman, 1970; Hahn and Meeker, 1991) and
the sequential case has been studied in considerable detail in environmental statistics (see
Gibbons, 1994for an overview). The primary advantages of the prediction limit approach
over the traditional two sample comparison approach are (1) that it provides an approach
to screening large numbers of genes when only small numbers of experimental subjects are
available, and (2) the experimental subjects may be tested sequentially, leading to impor-
tant intermediate information on potential differentially expressed genes. The question is
whether or not adequate statistical power can be obtained.

2.4. A sequential nonparametric prediction interval

Given the previous characterization of the problem and the questionable distributional
form of the intensity measurements, a natural approach to the solution of this problem is
to proceed nonparametrically. To fix ideas, for a particular gene (i.e., cDNA or expressed
sequence tag (EST) intensity on a microarray), let us define an upper “prediction limit” as
theuth largest source intensity out of then control sources. Ifu = n then our prediction
limit is the largest control intensity for that gene. Ifu = n − 1 then our prediction limit
is the second largest control intensity for that gene. A natural advantage of usingu < n is
that it provides an automatic adjustment for outliers in that the largestn − u values are
removed. Note, however, that the larger the difference betweenuandn the lower the overall
confidence keeping everything else equal.
Now consider the experimental subjects. Assume that we haveni experimental subjects

obtained sequentially in up topexperimental replicates or subsets, and letsi be the number
of experimental measurements required to be contained within the interval. For example, if
ni = 5 and we wish to have the median experimental value in subseti below the prediction
limit, thensi =3. In contrast, ifni =1, thensi =1 and subseti contains a singlemeasurement.
Note that as an example,si = ni = 5 andp = 1 is equivalent tosi = ni = 1 andp = 5. A
gene is selected only if thesi th experimental sample exceeds the prediction limit in all p
subsets.
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The questions of interest are: (1) What is the probability of a chance exceedance in allp
experimental subsets for different values ofn, u, ni , si andp? (2) How is this probability
affected by varying numbers of genes (i.e.,k)? (3) What is the power to detect a real
difference between expressed genes in two populations for a given statistical strategy ?
To address these questions, lety(si ,ni ) denote thesi th largest value (i.e., order statistic)

from theni sources in subseti (i = 1, . . . , p) andx(u,n) denote theuth order statistic from
a control sample of sizen. We can now express the previous discussion mathematically as

Pr{y(s1,n1) > x(u,n), y(s2,n2) > x(u,n), . . . , y(sp,np) > x(u,n)}��∗/k, (1)

where�∗ is the experiment-wise false positive rate (e.g.,�∗ = 0.05). In order to evaluate
the joint probability in Eq. (1) note that the probability density function of theuth order
statistic from a sample of sizen (i.e.,x(u,n)) is

g(x; n, u) = n!
(u − 1)!(n − u)! [F(x)]u−1[1− F(x)]n−u · f (x), (2)

where∫ ∞

−∞
[F(x)]u−1[1− F(x)]n−u · f (x)d(x) =

[
n!

(u − 1)!(n − u)!
]−1

=
[

n(n − 1)!
(u − 1)!(n − u)!

]−1

=
[
n

(
n − 1
u − 1

)]−1
, (3)

(seeSarhan and Greenberg, 1962). Since

Pr{y(j,m) �x} =
j−1∑
i=0

(
m

i

)
[F(x)]i[1− F(x)]m−i , (4)

the joint probability in (1) becomes

n∑p
i=1ni + n

s1−1∑
j1=0

s2−1∑
j2=0

. . .

sp−1∑
jp=0

(
n1
j1

) (
n2
j2

)
. . .

(
np

jp

) (
n − 1
u − 1

)
(∑p

i=1ni + n − 1∑p
i=1ji + u − 1

) = �, (5)

(Chou and Owen, 1986; Gibbons, 1990, 1991, 1994; Davis and McNichols, 1999). A lower
bound on the probability of thesi th largest experimental measurement (e.g., the median) in
allpsubsetsexceeding theuth largest controlmeasurement for anyof thekexpressedgenes is
given by�∗=1−(1−�)k. Oneminus this probability provides the corresponding confidence
level. Ultimately, for practical applications we would typically like the overall confidence
level to be approximately 95% (i.e.,�∗ �0.05). Note that this simple Bonferroni/Sidak-type
adjustment for the effects of multiple genes is overly conservative in that it assumes that
the genes are uncorrelated. Nevertheless, for design purposes (i.e., determining provisional
values ofn, u, ni , si andp) it is a quite useful lower bound on the experiment-wise Type I
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error rate,which can thenbeverified, or improvedupon, using randomizationor permutation
tests (Dudoit et al., 2002; Westfall andYoung, 1993) once the data have been collected.
To determine if a gene’s intensity level is significantly decreased in experimental relative

to control conditions, letx(l,n) denote thelth smallest value from a control subset of sizen.
Then Eq. (1) becomes

Pr
{
y(s1,n1) < x(l,n), y(s2,n2) < x(l,n), . . . , y(sp,np) < x(l,n)

}
��∗/k, (6)

which leads to

n∑p
i=1ni + n

n1∑
j1=s1

n2∑
j2=s2

. . .

np∑
jp=sp

(
n1
j1

) (
n2
j2

)
. . .

(
np

jp

) (
n − 1
l − 1

)
(∑p

i=1ni + n − 1∑p
i=1ji + l − 1

) = �. (7)

The probability of thesi th largest experimental measurement (e.g., the median) in allp
subsets being simultaneously less than thelth smallest control measurement for any of the
kexpressed genes is given by�∗ =1− (1−�)k, and oneminus this probability provides the
corresponding confidence level. For a two-sided interval, we compute upper and lower limits
eachwith probability�∗/2. If si is themedian of theni experimental measurements, and the
ni are odd, then the upper prediction limit can be computed with probability approximately
�∗/2 and the lower limit is simply the expression level of thel = (n − u + 1)th ordered
measurement.
The reader should note that selection of the tuning parameters (i.e.,n, u, ni , si andp)

is very much dependent on the particular problem to which the method is applied, and the
effect of changing the tuning parameters on the false positive and false negative rates for
the microarray study as a whole. As such, it is difficult to provide definitive guidelines of
what should be done in general. In the following illustrations and example, we outline the
process by which the tuning parameters are selected and illustrate the effect of changing
these parameters on statistical power and gene-wide false positive rates.

3. Illustration

To illustrate themethod, consider thepreviouslydescribedproblemofusing themaximum
of n = 50 control expression measurements as an upper prediction limit (i.e.,u = n = 50)
for a series ofni sequentially obtained experimental samples for each ofk =12,000 cDNA
intensities, wherek is the number of cDNAs on the gene chip or microarray. From Eq.
(5), we obtain an overall confidence level of less than 0.01 for bothni = 1 andni = 2,
indicating an extremely high likelihood (i.e., 99%) of at least one significant association by
chance alone. Forni = 3, the overall confidence level increases to 0.60 or a 40% chance
of a significant result by chance alone. However, forni = 4, the overall confidence level
increases to 0.96 or only a 4% chance of a significant result by chance alone. This rather
astounding result indicates that with a background set ofn = 50 control samples, but only
ni = 4 experimental samples, we can have 95% confidence that a gene that was expressed
above the maximum control sample in all four experimental samples is not due to chance
alone, despite simultaneous testing of 12,000 genes. In fact, this is a lower bound on the true
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confidence level to the extent that the genes are correlated. This simple procedure would
then permit rapid screening of huge numbers of genes using microarrays and the resulting
differentially expressed genes could then be validated using, for example RT-PCR (reverse
transcription-polymerase chain reaction). RT-PCR is a way to amplify RNA and/or DNA,
is quite sensitive, and can be used to validate microarray assays. RNase protection assays,
which are also fairly sensitive, can also be used to validate differentially expressed candidate
genes from microarray assays.

3.1. Statistical power

One might be tempted to stop here and design the experiment accordingly, since we
have shown that a reasonable experiment-wise false positive rate can be achieved with
50 control and only four experimental subjects. Note, however, that we have said nothing
about the likelihood that such a strategy will, in fact, have sufficient power to detect a true
difference. To this end, we can evaluate the power of the test for detecting a true control
versus experimental group difference via simulation. As a conservative approach, we can
simulate control and experimental measurements from a standard normal distribution with
control and experimental mean values separated by differences of 0–5 standard deviation
units. Different strategies can then be compared on the basis of their sampling requirements
and their power to detect a real difference of a given magnitude. For example, given the
previous example ofn = u = 50, ni = si = 4, p = 1, andk = 12,000, power of 80% is
achieved for a control versus experimental difference of 4.02�. While this is a large effect
size, we are asking a great deal from only four experimental measurements.
There are, however, several ways to increase statistical power of the procedure. For

example, what if we decreased u to the second largest control expression level? Doing
so decreases our overall confidence to 83%, however, 80% power is now achieved for a
3.58� difference between the true means of control and experimental populations. If 83%
confidence is unacceptable, we can increaseni andsi to five and confidence increases to
98%. Of course, the increase in confidence is not without a price. Withni = si = 5, 80%
power is achieved at 3.70�.
Additional gains in statistical power can be achieved by not requiring that allni experi-

mental samples be above(below) the upper(lower) prediction limit. For example, consider
the case in which we require the median ofni experimental samples to be below the upper
prediction limit. As an illustration, let us return to our original example ofn = 50 control
samples andk = 12,000 genes, and consider a single (p = 1) experimental group with
ni =5 subjects for which we want the median expression levelsi =3 to be below the largest
control measurement (u = 50). As one might expect, the overall confidence level is poor,
in this case approximately 1%. However, if we collect a second set ofni = 5 experimental
measurements (i.e.,p = 2), and require that both medians be above the prediction limit for
a gene to be differentially expressed, then confidence is now 97.5% and 80% power is now
achieved at only 3.14�. Further increases in power can be obtained by adding replicates and
decreasingu. For example, withu=47 i.e., the prediction limit is the expression level of the
fourth largest control measurement, andp =3 replicates each of sizeni , confidence is 93%
and power of 80% is obtained at 2.46�. In this case, we would collectp = 3 sets ofni = 5
sequentially, where after each set of five experimental measurements, we could decrease
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the list of genes that are potential candidates for differential expression to only those whose
median was above(below) the upper(lower) prediction limit up to that replicate.
Theseexamplesare just a tiny subset of thepossible comparative strategies that couldhave

been developed for this illustration. The choice among them should be based on the strategy
that achieves maximal statistical power while achieving the nominal experiment-wise false
positive rate, given available resources.

4. Bootstrap and permutation tests

Aspreviously noted, apotential limitationof the simpleBonferroni/Sidak typeadjustment
formultiple genes, is that it does not incorporate the effect of inter-gene communication, that
is, correlation of expression levels among subsets of genes. While the simple adjustment
may be useful for design purposes prior to obtaining the data, as the correlation among
the gene expression levels increases, the simple uniform adjustment for multiple genes
can be overly conservative. Once the data have been collected, better estimates of the
true experiment-wise Type I error rate and adjusted gene-specific confidence levels can be
obtained via bootstrap or permutation tests as suggested byDudoit et al. (2002), following
the work ofWestfall and Young (1993). The primary difference between bootstrap and
permutation resampling is that the former is done with replacement whereas the latter is
donewithout replacement (Westfall andYoung, 1993). The disadvantage of the permutation
approach is thatwemust enumerate all of the possible patterns ormaintain an index ofwhich
patterns have already been sampled. As the number of samples and replicates increase, the
number of permutations becomes too large for practical purposes. In the current context,
the following simple randomization algorithm can be used. FollowingWestfall andYoung
(1993) andManly (1997), we can either fully or randomly assign theN = n + ∑p

i ni

measurements to each of thep + 1 groups (i.e.,n controls andp experimental subsets
each of sizeni) without regard to their actual group membership. Over all permutations
or a large number of randomizations, we can then compute the actual probability that
the si th largest measurement in allp randomized experimental groups is above(below)
the randomized prediction interval for one or more genes. The probability is obtained by
simply enumerating the number of instances in which allpof the randomized experimental
medians are above(below) the upper(lower) randomized prediction limit for at least one
gene and dividing by the number of randomizations. The same algorithm can be used for
all possible permutations. If randomization is used, several thousand resamples should be
obtained (Manly, 1997).

5. Comparison to traditional two-sample tests

At what point is a traditional two-sample nonparametric test more powerful than a se-
quential prediction limit? First, the sequential nature of the prediction limits is in many
instances a distinct advantage over the traditional two-sample test (e.g., the Mann–Whitney
U-test). For the traditional test, we must wait until all of the data have been collected
before deriving any inference regarding differentially expressed genes, whereas as previ-
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ously shown for the sequential prediction limits, information on differential expression is
available after each individual sample or subset of samples. Second, for small numbers of
experimental samples (e.g., less than 10) and large numbers of genes (e.g., 10,000 or more),
traditional nonparametric two-sample tests are typically not even an option, in that they
cannot provide an overall experiment-wise false positive rate of 5% or less. For our original
example ofn=50,ni =4, andk =12,000 genes, the traditional nonparametric test is pow-
erless to detect an experimental versus control difference when adjusted for the multiple
comparisons using a Bonferroni-type correction. Nevertheless, there are many situations
in which the traditional two-sample test provides increased statistical power over the se-
quential prediction limit described here. In the following, we explore these conditions using
simulation.
For the two-sample nonparametric test, we use Bonferroni adjustment of the individual

gene Type I error rate to control for the simultaneous testing of allk genes. This is similar
to the sequential prediction limits, and both methods can be improved using bootstrap and
permutation tests as described in the previous section. For example, assume that we have
n=20 control samples andm=20 experimental samples. For the sequential prediction limit,
we can divide them = 20 experimental samples intop = 4 sequential replicates ofni = 5
samples each. Setting the prediction limit for thep=4medians (si =3) to the largest control
measurementu = 20 and considering a microarray withk = 12,000 genes, the prediction
limit achieves a 96% confidence level and 80% power is achieved for a difference of 2.92�.
By contrast, 80% power of the traditional two-sample Mann–Whitney U-test is achieved
for a difference of only 2.20�. As such, the additional power of the traditional two-sample
test for the case of a balanced design and larger numbers of experimental samples, may in
many cases overshadow the benefits of sequential testing.

6. Application to colon cancer data

Wenowapply the sequential prediction limits to a previously collected dataset to illustrate
their use. Note that this not a perfect example in that the number of control samples is, in
fact, smaller than the number of experimental samples. This is the case for most, if not all,
datasets that have been collected in this emerging field. Furthermore, these data were not
collected sequentially, however, we have randomly assigned the 40 experimental samples
to p = 8 subsets ofni = 5 samples each to illustrate the sequential process.
Alon et al. (1999)collected gene expression data from 40 tumor and 22 normal colon

tissues using Affymetrix oligonucleotide microarrays (Mack et al., 1998), complementary
to more than 6500 human genes. In analysis of these data, Alon and co-workers focused
on identifying genes that regulate each other or have similar cellular function, using cluster
analysis. Their analysis was based on a subset of 2000 genes with highest minimal intensity
across the tissue samples. The treatment of raw data from the Affymetrix oligonucleotide
arrays is described in detail in the original paper (Alon et al., 1999). In both the original
analysis and in our analysis, the data for eacharraywere normalizedbydividing the intensity
of each EST on an array by the mean intensity of all ESTs on the array, to compensate
for possible systematic intensity variations between arrays. Results of the original cluster
analysis revealed that tumor and normal tissues were separated into two distinct clusters
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Table 1
Number of differentially expressed genes and experiment-wise confidence level after each sequential replicate
sample of sizeni = 5—colon cancer data
No. of sequential No. of identified Overall confidence Overall confidence
samples (p) genes independence randomized

1 446 <0.001 <0.001
2 136 <0.001 0.032
3 78 0.004 0.286
4 57 0.211 0.616
5 47 0.603 0.817
6 33 0.830 0.914
7 23 0.923 0.960
8 18 0.962 0.979

based on tissue composition (i.e., genes that are related to the development of smooth
muscles, where tumors generally had a low muscle content).
In our reanalysis of these data, to illustrate the sequential process, we randomly split the

40 tumor tissues intop = 8 discrete subsets, each withni = 5 tissues, and developed a
prediction bound for the median measurement (si =3) in each subset, based on the interval
defined by the 4th (l = 4) and 19th (u = 19) ordered measurements out of the set ofn = 22
control measurements, simultaneously for allk = 2000 genes.p = 8 was selected because
it provided approximately 95% overall confidence, equally divided the tissues into subsets
with an odd number of measurements, and maximized statistical power relative to all of the
alternatives. The simple independence based estimated confidence associated with this in-
terval is 96.2%. The adjusted overall confidence level based on the randomization algorithm
is 97.9%, which is remarkably close to the independence based estimate.Table 1displays
the number of identified differentially expressed genes and associated independence based
and randomization based overall confidence levels as a function of the number of replicates
(p) obtained. As can clearly be seen inTable 1, poor overall confidence and large numbers
of false positives are identified with insufficient numbers of replicates.Table 1also reveals
that the independence based and randomization based overall confidence levels are quite
similar for high and low levels of confidence, but considerably different for intermediate
values in the .2 to .8 range. In general, however, we are only interested in high levels of con-
fidence, for example 95% or more. Note that forp = 7 replicates, the independence based
confidence level is .923, but the adjusted confidence level is .960.With seven replicates, an
additional five differentially expressed genes were identified.
It is of interest to note that if we had simply pooled all 40 tumor tissue samples into

a single group, the prediction interval defined by the 4th and 19th largest control levels
would only have a 13.3% adjusted overall confidence level of containing the median tumor
measurement for all 2000 genes. This contrasts with a 97.9% adjusted overall confidence
level when the data are split intop = 8 replicates each of sizeni = 5.
Table 2displays the 18 genes (out of 2000 genes) that had a median value outside

the prediction interval for allp = 8 subsets, and the additional 5 genes identified had
we stopped afterp = 7 replicates. As in the original analysis of these data performed by
Alon and co-workers, we observed a decrease in muscle specific gene products, including
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Table 2
Genes that significantly differentiate tumor from normal colon tissue

Gene number Sequence Name PTB**

Gene expression levels high in tumor tissue

M26697 Gene Human nucleolar protein (B23) mRNA, complete code 0.00080
M36981 Gene Human putative NDP kinase (nm23-H2S) mRNA, complete cds 0.22820
X14958 Gene Human hmgI mRNA for high mobility group proteinY 0.03040
M22382 Gene Mitochondrial matrix protein P1 precursor (Human) 0.00001
X12671 Gene Human gene for hnRNP core protein A1 0.00001
H40095 3’ UTR Macrophage migration inhibitory factor (Human) 0.00460
T86473 3’ UTR Nucleoside diphosphate kinase A (Human) 0.00160
R36977 3’ UTR Transcription factor IIIA 0.00160
T40454 3’ UTR Antigenic surface determinant protein OA3 precursor (Homo Sapiens) 0.04100
X67155 Gene Mitotic kinesin-like protein-1 with Alu repetetive element 0.38700
J05032 Gene Human aspartyl-tRNA synthetase alpha-2 subunit mRNA, complete cds 0.00080
H08393 3’ UTR Collagen alpha 2(XI) chain (Homo Sapiens) 0.00001
H38185 3’ UTR CYL-COA-Binding Protien (Homo sapiens)* 0.94200
R64115 3’ UTR Adenosylhomocysteinase (Homo sapiens)* 0.01560
X63629 Gene H.sapiens mRNA for p cadherin* 0.01560

Gene expression levels low in tumor tissue

M76378 Gene Human cysteine-rich protein (CRP) gene, exons 5 and 6 0.00600
M63391 Gene Human desmin gene, complete cds 0.00140
Z50753 Gene H.sapiens mRNA for GCAP-II/uroguanylin precursor 0.01000
R87126 3’ UTR Myosin heavy chain, nonmuscle (gallus gallus) 0.00001
J02854 Gene Myosin regulatory light chain 2, smooth muscle isoform 0.00140
M36634 Gene Human vasoactive intestinal peptide (VIP) mRNA, complete cds 0.00440
H43887 3’ UTR Complement factor D precursor (Homo sapiens)* 0.00560
T94350 3’ UTR Peripheral myelin protein 22(Homo sapiens)* 0.86160

∗Identified afterp = 7 replicates,
∗∗PTB= Permutation test probability.

myosin regulatory light chain andmyosin heavy chain in tumor tissues compared to control
tissues. However, in addition, our analysis revealed several significant differences in gene
expression between tumors and controls that were not identified in the initial analysis and
which are of direct relevance to colon cancer (Table 2). The first is significant overexpression
of nm23-H2S mRNA. Overexpression of this gene product has previously been linked to
early stages of colorectal carcinoma (Martinez et al., 1995). The second is overexpression of
mRNA for the cell surface antigenic determinant OA3. This surface antigen has previously
been reported to be highly specific to ovarian carcinomas, and has been used as a target
for immunotherapy of those tumors (Campbell et al., 1992). Our analysis suggests that
OA3 surface antigen is frequently overexpressed in colonic carcinomas, and may provide
an important target for immunotherapy of colon cancer. The third, cDNA that we found
increased corresponded tomacrophagemigration inhibitory factor (MIF). MIF is a cytokine
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that has been linked to an inhibition of natural killer cell-mediated lytic activity and is
increased in certain human uveal melanomas (Perou et al., 1999).Repp et al. (2000)suggest
that MIF is produced as ameans to allow uveal melanoma cells to escape NK-cell mediated
lysis. While the relevance of this activity remains to be confirmed with respect to colon
carcinomas, it raises the intriguing possibility that other tumor cells may possess similar
mechanisms to suppress certain immune responses.
Another interesting overexpressed gene product, encoding P-cadherin, is a member of

the cadherin superfamily of adhesion proteins. P-cadherin is aberrantly expressed in many
adenocarcinomas and appears to be preferentially expressed in invasive tumors and has
been implicated as a usefulmarker of aggressive clinical behavior in certain cervical cancers
(Han et al., 2000). Fatty acyl-CoA binding protein (ACBP) has been shown to be elevated in
transformed colon cells. (Gossett et al., 1997). The authors indicate that the overexpression
of ACBPmay be a consequence of the transformation process. Finally, we have shown that
S-adenosylhomocysteinase (SAM-hydroloase) is overexpressed in this study. This enzyme
has been shown to inactivate certain anticancer nucleoside analogues and may be increased
in response to specific therapeutic strategies. While it remains to be established whether
there is a correlation between individual patient therapies and the elevation of this gene
product, the clinical relevance of this observation may have important implications with
respect to treatment strategy.
Asapoint of comparison,we reanalyzed thecoloncancerdatausing thepermutationbased

method ofWestfall andYoung (1993), as described byDudoit et al. (2002). The permutation
based probabilities for the 23 genes identified by the prediction limit method are displayed
in Table 2. Of these, 19 are less than 0.05, indicating, in general, good agreement between
the two methods. Of the four genes that were identified by the prediction limits but not
by the permutation tests (i.e.,p >0.05 in Table 2), they have overall means between the
two groups that are similar due to the presence of a few elevated values in the control
group. As an illustration,Table 3presents the actual ordered data for genes X14958 which
had a permutation-based probability of 0.00001 and X67155 which had a permutation-
based probability of 0.38700. For X14958, there is large separation between the two groups
and in all cases, the median of the 8 subsets of 5 colon cancer samples is well above the
nonparametric upper prediction limit (i.e., the 19th order statistic). In contrast, for X67155,
the means are quite similar and there is considerable overlap between the two distributions.
However, in all cases, the median of the 8 subsamples of 5 colon cancer patients also
exceeds the upper nonparametric prediction limit, indicating a significant difference. This
is not surprising given the nonparametric nature of the prediction limit test.
Note however, that the permutation-based method identified an additional 36 genes that

were not identified by the prediction limit method. Without independent confirmation, it
is impossible to determine if these additional genes represent false positive results for the
permutation test or false negatives for the prediction limit methodology. However, we have
evaluated these genes from a functional perspective to determine their relevance to colon
cancer.
The 36 genes represented several categories of proteins. Five genes are involved in protein

synthesis, two genes are involved in cell cycle control, two genes are involved in DNA
binding or replication or repair, five genes are involved in chromatin or transcription, and
four genes are involved in signal transduction. It is difficult to conclude that these genes
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Table 3
Comparison of permutation test and nonparametric sequential prediction limit for one gene in which they agree
(X12671) and for one gene in which they disagree (X67155)

X12671 gene Human gene for hnRNP core protein A1
Permutation basedprobability= 0.00001

Controls (n = 22, x̄ = 0.8406,s = 0.4636, LPL= 0.442, UPL= 1.242)
0.261 0.303 0.414 0.442 0.463 0.483 0.546 0.550 0.558 0.616 0.728
0.731 0.752 0.781 0.917 1.229 1.237 1.2381.242 1.283 1.731 1.989

Patients(n = 40, x̄ = 1.9688, s = 0.8756)

Median
0.956 0.979 1.584 2.067 2.214
0.618 1.489 1.558 2.361 2.428
1.154 1.311 1.829 2.362 3.117
1.495 2.124 2.524 2.538 3.964
0.664 1.760 2.343 2.355 3.392
0.830 1.712 1.929 2.287 2.714
0.719 0.990 1.459 2.289 3.300

X67155 gene Mitotic kinesin-like protein-1 with Alu repetitive element
Permutation basedprobability= 0.38700
Controls(n = 22, x̄ = 0.2438, s = 0.0837, LPL = 0.152, UPL= 0.291)
0.117 0.134 0.138 0.152 0.174 0.203 0.207 0.215 0.216 0.225 0.232
0.239 0.249 0.256 0.263 0.263 0.274 0.2900.291 0.375 0.412 0.438

Patients(n = 40, x̄ = 0.3316, s = 0.1108)

Median
0.224 0.247 0.329 0.448 0.584
0.248 0.295 0.361 0.390 0.427
0.075 0.262 0.319 0.350 0.387
0.236 0.284 0.353 0.404 0.461
0.192 0.295 0.321 0.350 0.366
0.190 0.192 0.346 0.398 0.586
0.195 0.283 0.358 0.368 0.410
0.144 0.237 0.394 0.453 0.503

are not related to colon cancer in that there is literature suggesting that each of these
processes either has a relationship with some form of cancer or they might be anticipated
to be upregulated in rapidly dividing cells. In addition, one gene, Cyctatin, is of potential
interest in colon cancer and would be hypothesized to be downregulated which, in fact, it
was. Four of the additional genes identified are less likely to be associated with cancerous
cells. They may be false positives but it is difficult to know until the data are confirmed
independently. The remaining genes, indicated asOPRF (open reading frame), are not as yet
identified.
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These results indicate that many different statistical methods may be quite relevant in
analysis of gene expression levels. The prediction limits presented here have the advantage
of (a) being nonparametric and therefore robust to outliers, and (b) being conservative in that
they only identify geneswith consistent increases and decreases acrossmultiple subsamples
of the population.

7. Discussion

The goal of the statistical methodology developed here is to identify one or more genes
that are associated with a particular biological or experimental condition of interest. The
primary contribution of this work is to provide such an identification that is beyond chance
expectations due to the large number of genes that are routinely screened on a microarray,
and to understand the statistical power associated with such a decision rule. The primary
advantage of the sequential approach over a traditional two-sample comparison is that
intermediate information regarding differential expression is available after each new ex-
perimental sample (or subset of samples) is obtained. A second advantage is that when
a large number of control samples are available, statistical inference with small numbers
(i.e.,<10) of experimental samples is possible, even when large numbers of genes (e.g.,
>10,000) are simultaneously investigated. By contrast, when larger and comparable num-
bers of measurements are available, traditional two-sample nonparametric tests generally
have increased power relative to sequential nonparametric prediction limits. As such, the
sequential prediction limits presented here are most useful as a screening tool for large
numbers of genes and small numbers of experimental observations. RT-PCR, for exam-
ple, can then be used to validate the differential expression of these new candidate genes.
In addition, a linear combination of the candidate genes in this more manageable subset
may then be identified that maximally differentiate control and experimental tissues (e.g.,
a discriminant function analysis) and that can be used for the purpose of classification, risk
assessment and perhaps even as a diagnostic tool.
Application of this statistical methodology to the colon carcinoma data collected byAlon

and co-workers clearly illustrated the utility of the approach. Several of the differentially
expressed genes identified in our analysis have been previously identified in various forms
of cancer, but not previously in connection with colon cancer. These results go beyond those
previously reported from the cluster analysis described in the original report by Alon and
co-workers.Of course, these differentially expressed candidate genesmust nowbe validated
by another method, such as RT-PCR.
As a final note, the methodology described here is applicable to any large scale au-

tomated screening system (e.g., high throughput receptor binding screening) where the
outputs are measured on a continuous scale. As pointed out for the case of gene expression
data, the methodology is uniquely suited to those cases in which the number of potential
indicators is large and the number of available subjects is small. The robustness shown
with respect to correlation among subsets of the multiple endpoints further insures the
widespread utility of the general approach as a tool for experimental design of screening
studies and the use of permutation tests provide more realistic estimates of adjusted gene-
specific confidence levels which take the correlation between genes into account. To provide
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ease of application, we have developed a “probability calculator” which computes single
gene and experiment-wise confidence levels and corresponding statistical power for any
set of values ofN, ni, p, u, l, si , andk. The probability calculator is freely available at
www.uic.edu/labs/biostat/.
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